ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 65517
УсловиеКаково наибольшее количество последовательных натуральных чисел, у каждого из которых ровно четыре натуральных делителя (включая 1 и само число)? Решение Предположим, что найдутся четыре подряд идущих числа, удовлетворяющих условию. Заметим, что среди четырёх подряд идущих чисел одно делится на 4. Тогда в разложении этого числа на простые множители есть не менее двух двоек. Если есть еще простой делитель p, отличный от двойки, то делителей у числа не менее шести: 1, 2, 4, p, 2p, 4p. Если в разложении есть только двойки, то для того, чтобы делителей было ровно четыре (1, 2, 4, 8), двоек должно быть ровно три. Итак, существует единственное делящееся на 4 число, у которого ровно четыре делителя – число 8. Его соседи (7 и 9) условию не удовлетворяют, поэтому искомых чисел не более трёх. ОтветТри числа. ЗамечанияЕсть и другие примеры. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|