ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65802
Темы:    [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Осевая и скользящая симметрии (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Дан треугольник ABC. Рассмотрим три окружности, первая из которых касается описанной окружности Ω в вершине A, а вписанной окружности ω внешним образом в какой-то точке A1. Аналогично определяются точки B1 и C1.
  а) Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
  б) Пусть A2 – точка касания ω со стороной BC. Докажите, что прямые AA1 и AA2 симметричны относительно биссектрисы угла A.


Решение

а) Обозначим первую из указанных окружностей через α. Так как точка A является центром положительной гомотетии α и Ω, а точка A1 – центром отрицательной гомотетии α и ω, то прямая AA1 проходит через центр отрицательной гомотетии Ω и ω. Через эту же точку проходят две другие прямые.

б) Известно, что центр отрицательной гомотетии Ω и ω изогонально сопряжен точке Жергонна (см., например книгу А.В. Акопяна и А.А. Заславского "Геометрические свойства кривых второго порядка", с. 57), в которой пересекаются прямые AA2, BB2 и CC2 (см. задачу 53788). Отсюда сразу следует утверждение задачи.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2016
тур
задача
Номер 14

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .