ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 65910
УсловиеВысоты неравнобедренного остроугольного треугольника ABC пересекаются в точке H. O – центр описанной окружности треугольника BHC. Центр I вписанной окружности треугольника ABC лежит на отрезке OA. Найдите угол A. Решение Из условия следует, что точка O лежит на пересечении биссектрисы угла A и серединного перпендикуляра к стороне BC. Так как эти прямые пересекаются на описанной окружности треугольника ABC, то O лежит на этой окружности и является серединой дуги ВС. Кроме того, Ответ60°. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|