ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65991
Темы:    [ Квадратные уравнения и системы уравнений ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке.
Какие числа могут быть записаны?


Решение

См. задачу 79311.


Ответ

Каждое из записанных чисел равно 2.

Замечания

9 баллов

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2016/17
класс
Класс 10
задача
Номер 10.4.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .