ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66101
Темы:    [ Биссектриса угла ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Из вершины A остроугольного треугольника ABC по биссектрисе угла A выпустили бильярдный шарик, который отразился от стороны BC по закону "угол падения равен углу отражения" и дальше катился по прямой, уже ни от чего не отражаясь. Докажите, что если  ∠A = 60°,  то траектория шарика проходит через центр описанной окружности треугольника ABC.


Решение

Отразим относительно BC центр O описанной окружности Ω треугольника ABC. Получим точку O'. Так как
BO'C = ∠BOC = 2∠A = 120° = 180° – ∠A,  то O' лежит на Ω. Так как O лежит на серединном перпендикуляре к BC, то O' – середина дуги BC. Значит, биссектриса угла A проходит через O'. Это и значит, что после отражения шарик пройдёт через точку O.

Замечания

5 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
номер/год
Номер 38
Дата 2016/17
вариант
Вариант весенний тур, базовый вариант, 8-9 класс
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .