ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66110
Темы:    [ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
  а) слева;  б) в центре;  в) справа?

(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)


Решение

См. рисунки.


Ответ

Можно.

Замечания

1. Ещё один пример для п. в).

2. Подобным образом можно построить фигуру для любого несамопересекающегося разреза.

3. На Московской олимпиаде предлагались только пп. а) и в).

4. Баллы – 1 + 2 + 4.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 80
Год 2017
класс
Класс 9
задача
Номер 3
олимпиада
Название Турнир городов
номер/год
Номер 38
Дата 2016/17
вариант
Вариант весенний тур, сложный вариант, 8-9 класс
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .