ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66772
Темы:    [ Вневписанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Автор: Тригуб А.

В треугольнике $ABC$ вневписанная окружность, лежащая напротив угла $C$, касается стороны $AB$ в точке $T$. Пусть $J$ – центр вневписанной окружности, лежащей напротив угла $A$, a $M$ – середина $AJ$. Докажите, что $MT=MC$.

Решение

Пусть $R$ – проекция $J$ на прямую $AC$. Тогда $CR=p-AC=AT$. Также $MR=MA$ как медиана в прямоугольном треугольнике $AJR$ и $\angle MRA=\angle MAR=\angle MAT$. Следовательно, треугольники $MTA$ и $MCR$ равны по двум сторонам и углу между ними, а значит $MT=MC$.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2019
Заочный тур
задача
Номер 4 [8 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .