Условие
Дан выпуклый многогранник и точка $K$, не принадлежащая ему. Для каждой точки $M$ многогранника строится шар с диаметром $MK$. Докажите, что в многограннике существует единственная точка, принадлежащая всем таким шарам.
Решение
Пусть $P$ – ближайшая к $K$ точка многогранника. Поскольку многогранник выпуклый, точка $P$ определена однозначно и многогранник лежит по одну сторону от плоскости, проходящей через $P$ и перпендикулярной $PK$. Поэтому шар с диаметром $PK$ не имеет с многогранником общих точек, отличных от $P$, а сама точка $P$ принадлежит любому шару с диаметром $KM$.
Источники и прецеденты использования