ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66962
Темы:    [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Через вершины треугольника $ABC$ проведены параллельные прямые $l_a$, $l_b$, $l_c$. Пусть прямая $a$ симметрична высоте $AH_a$ относительно $l_a$. Аналогично определяем $b$, $c$. Докажите, что $a$, $b$, $c$ пересекаются в одной точке.

Решение

Поскольку угол между прямыми $a$ и $b$ равен углу между высотами треугольника, точка пересечения этих прямых лежит на окружности, симметричной относительно $AB$ окружности $ABH$ ($H$ – ортоцентр), т.е. на описанной окружности треугольника $ABC$. Прямая $c$ пересекает описанную окружность в той же точке.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2021
класс
Класс 8
задача
Номер 8.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .