ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 67012
Темы:    [ Арифметические действия. Числовые тождества ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30?

Решение

$\frac{20}{2-\sqrt{2}}=\frac{20(2+\sqrt{2})}{2}=20+10\sqrt{2}>20+10.$ Есть и другие решения.

Ответ

Может.

Замечания

С помощью вычитания, деления и извлечения квадратного корня из чисел $20$, $2$ и $2$ можно получить сколь угодно большое число, взяв дробь $\frac{20}{\sqrt[2^n]{2} - \sqrt[2^{n+1}]{2}}$ при достаточно большом $n$.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 85
Год 2022
класс
Класс 8
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .