ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 67154
Темы:    [ Примеры и контрпримеры. Конструкции ]
[ Разные задачи на разрезания ]
Сложность: 4
Классы: 7,8,9,10,11
В корзину
Прислать комментарий

Условие

Барон Мюнхгаузен утверждает, что нарисовал многоугольник и точку внутри него так, что любая прямая, проходящая через эту точку, делит этот многоугольник на три многоугольника. Может ли барон быть прав?

Решение

Cм. примеры на рисунках. На втором рисунке существенно, что на одной прямой лежит тройка точек A, O, A', тройка B, O, B' и тройка C, O, C'.


Ответ

может.

Источники и прецеденты использования

олимпиада
Название Турнир городов
год/номер
Номер 44
Дата 2022/23
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .