Условие
(В. Баур, Ф.Штрассен)
Дана программа вычисления значения некоторого многочлена
P(
x1,...,
xn), содержащая только команды
присваивания. Их правые части — выражения, содержащие
сложение, умножение, константы, переменные
x1,...,
xn
и ранее встречавшиеся (в левой части) переменные. Доказать,
что существует программа того же типа, вычисляющая все
n производных
P/
x1,...,
P/
xn,
причём общее число арифметических операций не более чем
в
C раз превосходит число арифметических операций
в исходной программе. Константа
C не зависит от
n.
Подсказка
Можно считать, что каждая команда — сложение двух чисел,
умножение двух чисел или умножение на константу.
Использовать индукцию по числу команд, применяя индуктивное
предположение к программе, получающейся отбрасыванием
первой команды.
Источники и прецеденты использования
|
книга |
Автор |
А.Шень |
Название |
Программирование: теоремы и задачи |
Издательство |
МЦНМО |
Издание |
второе |
Год издания |
2004 |
глава |
Номер |
1 |
Название |
Переменные, выражения, присваивания |
параграф |
Номер |
2 |
Название |
Массивы |
задача |
Номер |
1.2.14 |