ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 77888
УсловиеИмеется 4n положительных чисел, таких, что из любых четырёх попарно различных можно составить геометрическую прогрессию. Доказать, что среди этих чисел найдется n одинаковых.РешениеПокажем, что среди данных чисел не может быть больше четырёх попарно различных чисел. Объединим равные числа в группы, выберем в каждой группе по одному числу и расположим выбранные числа в порядке убывания: a > b > c > d > e > .... Числа a, b, c, d по условию образуют геометрическую прогрессию. Но ab > cd и ac > bd, поэтому ad = bc, т.е. d = bc/a. Те же самые рассуждения показывают, что e = bc/a.Также доступны документы в формате TeX Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|