ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78013
Темы:    [ Числовые таблицы и их свойства ]
[ Центральная симметрия помогает решить задачу ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Из клетчатой бумаги вырезан квадрат 17×17. В клетках квадрата произвольным образом написаны числа 1, 2, 3, ..., 70 по одному и только одному числу в каждой клетке. Доказать, что существуют такие четыре различные клетки с центрами в точках A, B, C, D, что  AB = CD,  AD = BC  и сумма чисел, стоящих в клетках с центрами в A и C, равна сумме чисел в клетках с центрами B и D.


Решение

Рассмотрим всевозможные пары клеток, симметричных относительно центра квадрата. Количество таких пар равно  (17² – 1) : 2 = 144.  Сумма чисел, написанных в двух клетках может быть равна 2, 3, ..., 140. Поэтому найдутся две пары клеток, симметричных относительно центра квадрата, с равными суммами написанных чисел. В качестве точек A и C возьмём центры одной пары клеток, а в качестве точек B и D — центры другой пары.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 17
Год 1954
вариант
Класс 8
Тур 2
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .