ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 78020
УсловиеДан отрезок OA. Из конца отрезка A выходит 5 отрезков AB1, AB2, AB3, AB4, AB5. Из каждой точки Bi могут выходить ещё пять новых отрезков или ни одного нового отрезка и т.д. Может ли число свободных концов построенных отрезков равняться 1001? Под свободным концом отрезка понимаем точку, принадлежащую только одному отрезку (кроме точки O). РешениеПри проведении пяти отрезков из конца отрезка появляются 5 новых свободных концов и пропадает один старый. В результате число свободных концов увеличивается на 4. Поэтому если пятёрки отрезков проведены k раз, то число свободных концов равно 4k + 1. При k = 250 получаем нужное число свободных концов. ОтветМожет. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|