ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78023
Темы:    [ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Рассматриваются всевозможные десятизначные числа, записываемые при помощи двоек и единиц. Разбить их на два класса так, чтобы при сложении любых двух чисел каждого класса получалось число, в написании которого содержится не менее двух троек.


Решение

Отнесём к первому классу все числа, в записи которых встречается чётное число двоек, а ко второму классу – все числа, в записи которых встречается нечётное число двоек. Два числа одного класса либо содержат одинаковое число двоек, либо в одном числе двоек по крайней мере на две больше, чем в другом. Если два числа различны, то на каком-то месте в одном числе стоит 1, а в другом числе стоит 2; если же двоек у этих чисел одинаковое количество, то таких мест по крайней мере два. Если в одном числе двоек по крайней мере на две больше, чем в другом, то по крайней мере двум двойкам в записи первого числа соответствуют единицы в записи второго числа.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 17
Год 1954
вариант
Класс 10
Тур 2
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .