ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 78129
УсловиеДано n целых чисел a1 = 1, a2, a3, ..., an, причём ai ≤ ai+1 ≤ 2ai (i = 1, 2,..., n – 1) и сумма всех чисел чётна. Можно ли эти числа разбить на две группы так, чтобы суммы чисел в этих группах были равны? Решение Отнесём к одной группе число an, а к другой – число an–1. Затем будем последовательно относить числа an–2, an–3, ..., a1 к той группе, в которой сумма чисел меньше (если суммы равные, то число можно относить к любой группе). Пусть Δk ≥ 0 – разность между суммами чисел в группах, полученных после отнесения к ним ak. Покажем, что Δk ≤ ak. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|