ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78142
Темы:    [ Поворот и винтовое движение ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 4-
Классы: 10,11
В корзину
Прислать комментарий

Условие

Какое наибольшее число осей симметрии может иметь пространственная фигура, состоящая из трёх прямых, из которых никакие две не параллельны и не совпадают?

Решение

Пространственная фигура, состоящая из двух не параллельных и не совпадающих прямых l1 и l2, имеет ровно три оси симметрии. Действительно, рассмотрим плоскость $ \Pi$, параллельную прямым l1 и l2 и равноудалённую от них (в случае пересекающихся прямых это будет содержащая их плоскость). Осями симметрии будут две биссектрисы углов, образованных ортогональными проекциями прямых l1 и l2 на плоскость $ \Pi$, и прямая, ортогональная плоскости $ \Pi$ и проходящая через точку пересечения проекций. Ось симметрии фигуры, состоящей из трёх прямых, является также осью симметрии некоторых двух из этих прямых. Из трёх прямых можно выбрать три пары прямых. Поэтому количество осей симметрии фигуры, состоящей из трёх прямых, не превосходит 9. Ясно также, что фигура, состоящая из трёх взаимно перпендикулярных прямых, проходящих через одну точку, имеет ровно 9 осей симметрии.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 21
Год 1958
вариант
Класс 10
Тур 1
задача
Номер 3
олимпиада
Название Московская математическая олимпиада
год
Номер 21
Год 1958
вариант
Класс 9
Тур 1
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .