ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78237
Темы:    [ Классическая комбинаторика (прочее) ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 10,11
В корзину
Прислать комментарий

Условие

Улитка должна проползти вдоль линий клетчатой бумаги путь длины 2n, начав и кончив свой путь в данном узле.
Доказать, что число различных её маршрутов равно  


Решение

При любом таком маршруте число ходов вверх равно числу ходов вниз, а число ходов вправо равно числу ходов влево. Выпишем на один лист бумаги номера ходов, ведущих вправо или вверх, а на другой — номера ходов, ведущих влево или вверх. На каждом листе будет выписано ровно n номеров. По каждой паре таких наборов маршрут однозначно восстанавливается (например, если номер входит в оба набора, то ему соответствует ход вверх). Этот маршрут замкнутый, поскольку число ходов вправо равно числу ходов влево (оба они дополняют число ходов вверх до n), а число ходов вверх равно числу ходов вниз (вычитая из общего числа 2n ходов число ходов вправо, влево и вверх, мы, с одной стороны, получим число ходов вниз, а с другой стороны, – число ходов вверх). Итак, число маршрутов равно числу пар наборов из n номеров, то есть  

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 23
Год 1960
вариант
1
Класс 10
Тур 2
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .