ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 78476
УсловиеЛист клетчатой бумаги размером 5×n заполнен карточками размером 1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно? Решение Так как произведение чисел в каждом столбце положительно, то минус единицы встречаются в каждом столбце, а значит, и во всей таблице чётное число раз. Следовательно, общее число карточек чётно, а общее число клеток в таблице (которое вдвое больше) делится на 4. Итак, 5n делится на 4; стало быть, n делится на 4. ОтветПри n, кратном 4. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|