ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78477
Темы:    [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9.

Решение

Предположим, что первый член и разность арифметической прогрессии по абсолютной величине меньше $10^k$. Тогда найдётся член прогрессии, у которого (k + 1)-я цифра — любая заданная цифра. В частности, эта цифра может быть девяткой.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 26
Год 1963
вариант
1
Класс 10
Тур 1
задача
Номер 1
олимпиада
Название Московская математическая олимпиада
год
Номер 26
Год 1963
вариант
1
Класс 9
Тур 1
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .