ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78670
Темы:    [ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Процессы и операции ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На плоскости даны три точки. Из них выбираются любые две, строится серединный перпендикуляр к отрезку, их соединяющему, и все точки отражаются относительно этой прямой, затем из всех точек (старых и новых) снова выбираются какие-то две точки и вся процедура повторяется. Так делается бесконечно много раз. Доказать, что в плоскости найдётся такая прямая, что все полученные точки будут лежать по одну сторону от нее.

Решение

На каждом шаге получаются точки, лежащие на окружности, проходящей через исходные три точки.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 31
Год 1968
вариант
1
Класс 7
Тур 2
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .