ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78766
Темы:    [ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8
В корзину
Прислать комментарий

Условие

Можно ли разбить числа 1, 2, 3, ..., 33 на 11 групп, по три числа в каждой, так, чтобы в каждой группе одно из чисел равнялось сумме двух других?


Решение

При таком разбиении сумма чисел в каждой группе была бы чётна. А сумма всех чисел нечётна.


Ответ

Нельзя.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 33
Год 1970
вариант
Класс 7
Тур дополнительный
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .