ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78835
Темы:    [ Свойства частей, полученных при разрезаниях ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5
Классы: 9,10
В корзину
Прислать комментарий

Условие

На плоскости проведено 3000 прямых, причём никакие две из них не параллельны и никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на куски. Доказать, что среди кусков найдётся не менее: а) 1000 треугольников, б) 2000 треугольников.

Решение

а) См. решение задачи 78830.
б) Докажем, что если проведено n ≥ 3 прямых, то число треугольников не меньше $ {\frac{2n-2}{3}}$.
Рассмотрим все точки пересечения данных прямых. Докажем, что эти точки могут лежать по одну сторону не более чем от двух данных прямых. Предположим, что все точки пересечения лежат по одну сторону от трёх данных прямых. Эти прямые образуют треугольник ABC. Четвёртая прямая не может пересекать только стороны этого треугольника, т.е. она пересекает хотя бы одно продолжение стороны. Пусть для определённости она пересекает продолжение стороны AB за точку B в некоторой точке M. Тогда точки A и M лежат по разные стороны от прямой BC. Получено противоречие. Поэтому имеются по крайней мере n - 2 прямые, по обе стороны от которых лежат точки пересечения. Если мы выберем в полуплоскости, заданной прямой l, ближайшую к l точку пересечения, то эта точка будет вершиной треугольника, прилегающего к прямой l. Таким образом, имеется не менее n - 2 прямых, к которым прилегает по крайней мере по два треугольника, и две прямые, к каждой из которых прилегает хотя бы один треугольник. Так как каждый треугольник прилегает ровно к трём прямым, то треугольников не менее (2(n − 2) + 2)/3.
При n = 1000 получаем не менее 1999$ {\frac{1}{3}}$ треугольников. Значит, количество треугольников не меньше 2000.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 35
Год 1972
вариант
Класс 9
Тур 2
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .