ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 79238
Темы:    [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 9
В корзину
Прислать комментарий

Условие

Пусть на плоскости есть пять точек общего положения, то есть никакие три из них не лежат на одной прямой и никакие четыре — на одной окружности. Докажите, что среди этих точек есть две такие, что они лежат по разные стороны от окружности, проходящей через оставшиеся три точки.

Решение

Среди данных точек выберем точки A и B так, чтобы все остальные точки лежали по одну сторону от прямой AB. Остальные три точки обозначим C, D, E так, что $ \angle$ACB > $ \angle$ADB > $ \angle$AEB. Тогда точки C и E лежат по разные стороны от окружности, проходящей через точки A, B и D.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 36
Год 1973
вариант
Класс 8
Тур 1
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .