ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 79302
Темы:    [ Рекуррентные соотношения ]
[ Обратный ход ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности: а) набор цифр 1234; 3269; б) вторично набор 1975?

Решение

См. решение задачи 79304.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 38
Год 1975
вариант
Класс 7
Тур 2
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .