ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 79473
Темы:    [ Квадратичные неравенства (несколько переменных) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Числа a1, a2, ..., a1985 представляют собой переставленные в некотором порядке числа 1, 2, ..., 1985. Каждое число ak умножается на его номер k, а затем среди полученных 1985 произведений выбирается наибольшее. Доказать, что оно не меньше, чем 993².


Решение

Чисел ak, не меньших 993, в точности 993. Поэтому хотя бы одно из них имеет номер, не меньший 993, и для него  kak ≥ 993².

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 48
Год 1985
вариант
Класс 8
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .