ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 87137
УсловиеВ трёхгранный угол, все плоские углы которого равны α , помещена сфера так, что она касается всех рёбер трёхгранного угла. Грани трёхгранного угла пересекают сферу по окружностям радиуса r . Найдите радиус сферы.РешениеПусть сфера с центром O и радиусом R касается рёбер трёхгранного угла с вершиной P в точках A , B и C , а окружность радиуса r касается прямых AP и BP в точках A и B соответственно. ТогдаРассмотрим правильную треугольную пирамиду PABC с вершиной P . Пусть PM – её высота, AB = BC = AC = a . Обозначим через ϕ угол между высотой PM и боковым ребром. Тогда Пусть O1 – центр окружности, вписанной в угол APB . Тогда O1A AP , поэтому по теореме о трёх перпендикулярах OA AP . Из прямоугольного треугольника AOP находим, что Ответ.Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|