ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 87171
УсловиеНайдите расстояние от точки D(1;3;2) до плоскости, проходящей через точки A(-3;0;1), B(2;1;-1) и C(-2;2;0) .РешениеНайдём координаты векторов и :Пусть = (a; b; c) – ненулевой вектор, перпендикулярный искомой плоскости. Тогда · = 0 и · = 0 , или Умножим обе части второго уравнение на -2 и результат сложим почленно с первым. Получим уравнение 3a - 3b = 0 . Положим a = b = 1 . Тогда c = a + 2b = 3 . Через точку A проведём плоскость, перпендикулярную вектору = (1; 1; 3) : Пусть ρ – расстояние от точки D(x0;y0;z0) до плоскости, заданной уравнением ax + by + cz + d = 0 . Тогда В нашем случае Ответ.Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|