ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 97840
УсловиеПосёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы). Решение Всего есть 24 отрезка (улицы) длины b, по которым должен проехать асфальтоукладчик. К восьми перекрёсткам подходит нечётное число таких отрезков. По одному из отрезков, подходящему к такому перекрёстку, асфальтоукладчику придётся проехать дважды. Поскольку отрезок соединяет два перекрёстка, лишних проездов не меньше 8 : 2 = 4. Итого весь путь составит не меньше 24b + 4b = 28b. Ответ28b. Замечания7-8 кл. – 6 баллов, 9-10 кл. – 5 баллов Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|