ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 97862
УсловиеНа прямой сидят три кузнечика, каждую секунду прыгает один кузнечик. Он
прыгает через какого-нибудь кузнечика (но не через двух сразу). РешениеВ каждый момент два кузнечика меняют свое "взаимное положение" (если до прыжка слева был один, справа другой, то после прыжка – наоборот). Чтобы вернуться на свои места, каждые два кузнечика должны поменять взаимное положение чётное число раз. Но сумма трёх чётных чисел не может равняться 1985. Замечания1. Задача предлагалась также на 51-й Ленинградской математической олимпиаде (1985, 6 кл., зад. 5). 2. 7-8 кл. – 5 баллов, 9-10 кл. – 4 балла. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|