ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 97902
Темы:    [ Тетраэдр (прочее) ]
[ Векторы (прочее) ]
[ Вспомогательные проекции ]
Сложность: 3
Классы: 10,11
В корзину
Прислать комментарий

Условие

Автор: Фольклор

На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?


Решение

Спроектируем все шесть векторов на одну из высот тетраэдра. При этом три вектора спроектируются в нулевые, а остальные дают равные по модулю проекции. Но их три, и их сумма не может равняться нулю. Тем более не равна нулю исходная сумма.


Ответ

Не может.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 7
Дата 1985/1986
вариант
Вариант весенний тур, 9-10 класс
Задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .