ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98054
Тема:    [ Взвешивания ]
Сложность: 4-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Автор: Фомин Д.

Даны 103 монеты одинакового внешнего вида. Известно, что две из них – фальшивые, что все настоящие одинакового веса, что фальшивые – тоже одинакового веса, отличающегося от веса настоящих монет. Но неизвестно, в какую сторону отличаются веса фальшивых монет от настоящих. Как можно это узнать с помощью трёх взвешиваний на двухчашечных весах без гирь? (Отделить фальшивые монеты не требуется.)


Решение

Пусть у нас имеется  6k + 1  монета, из которых две фальшивые. Выбросим одну монету, а остальные разделим на три кучки – A, B, C – по 2k монет в каждой. Заметим, что среди них найдутся ровно две кучки с одинаковым весом. Взвесим сначала A с B, а затем B с C. Пусть, например, A тяжелее чем B и C. Тогда в B не более одной фальшивой монеты (так как веса B и C равны). Разделим B на две равные части и взвесим их. Если веса равны, то фальшивая монета тяжелее настоящей, а иначе – легче.

Замечания

1. Задача предлагалась также на Ленинградской математической олимпиаде (1990, 8 кл., № 5).

2. 7 баллов.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1989/1990
Номер 11
вариант
Вариант весенний тур, тренировочный вариант, 10-11 класс
Задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .