ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98120
Темы:    [ Свойства медиан. Центр тяжести треугольника. ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 10,11
В корзину
Прислать комментарий

Условие

Пусть M – центр тяжести (точка пересечения медиан) треугольника ABC. При повороте на 120° вокруг точки M точка B переходит в точку P, при повороте на 240° вокруг точки M (в том же направлении) точка C переходит в точку Q. Докажите, что либо треугольник APQ – правильный, либо точки A, P, Q совпадают.


Решение

Пусть R – поворот на 60°. Заметим, что  R²(a) + a = R(a)  для любого вектора a. Как известно,     Отсюда     Аналогично     что и требовалось.

Замечания

8 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1991/1992
Номер 13
вариант
Вариант осенний тур, основной вариант, 10-11 класс
Задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .