ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98282
Темы:    [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

а) Существуют ли четыре таких различных натуральных числа, что сумма каждых трёх из них есть простое число?
б) Существуют ли пять таких различных натуральных чисел, что сумма каждых трёх из них есть простое число?


Решение

См. задачу 98281 а), б).


Ответ

а) Существуют;  б) не существуют.

Замечания

Баллы: 2 + 2

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1995/1996
Номер 17
вариант
Вариант осенний тур, тренировочный вариант, 10-11 класс
Задача
Номер 2
олимпиада
Название Турнир им.Ломоносова
номер/год
Название конкурс по математике
Дата 1995
Задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .