ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98378
Темы:    [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.


Решение

При каждом недиагональном ходе меняется цвет поля, на котором стоит король; при диагональном – не меняется. Поскольку король обошёл всю доску и вернулся обратно, то цвет поля менялся с белого на чёрный столько же раз, сколько с чёрного на белый, значит, недиагональных ходов король сделал чётное число. Число диагональных ходов равно 64 минус число недиагональных ходов – тоже чётное число.

Замечания

3 балла

Источники и прецеденты использования

web-сайт
задача
олимпиада
Название Турнир городов
Турнир
Дата 1997/1998
Номер 19
вариант
Вариант весенний тур, тренировочный вариант, 8-9 класс
Задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .