ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 98387
УсловиеКвадрат разбит прямыми на 25 квадратиков-клеток. В некоторых клетках нарисована одна из диагоналей так, что никакие две диагонали не имеют общей точки (даже общего конца). Каково наибольшее возможное число нарисованных диагоналей? РешениеПример с 16 диагоналями см. на рисунке. Оценка. Предположим, что удалось провести 17 диагоналей. Приведём два способа прийти к противоречию.Первый способ. Каждая диагональ имеет два конца, расположенных в узлах квадратной сетки. Всего таких узлов в квадрате 36. 12 из них расположены на границе внутреннего квадрата 3×3 (рис. слева), поэтому диагоналей с концами в этих узлах проведено не больше 12. Оставшиеся пять диагоналей могут располагаться только в центральной и четырёх угловых клетках. Значит, четыре узла, расположенные в вершинах квадрата, не являются концами проведённых диагоналей, то есть 17 диагоналей имеют не более 36 – 4 = 32 концов. Противоречие. Второй способ. В каждом прямоугольнике 5×2 проведено не больше 6 диагоналей: на его средней линии всего шесть узлов, а каждая диагональ имеет один из них своим концом. Значит, во всех горизонталях квадрата, кроме средней, проведено в сумме не более 12 диагоналей. Поэтому в средней горизонтали их не меньше, чем 17 – 12 = 5, то есть в каждой её клетке проведена диагональ. Ответ16 диагоналей. Замечания7 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|