ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98536
Темы:    [ Осевая и скользящая симметрии (прочее) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Частные случаи треугольников (прочее) ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

На плоскости отмечены несколько (больше трёх) точек. Известно, что если выкинуть любую точку, то оставшиеся будут симметричны относительно какой-нибудь прямой. Верно ли, что все множество точек тоже симметрично относительно какой-нибудь прямой?


Решение

В равнобедренном треугольнике ABC с углами A, B и C, равными соответственно 72°, 36° и 72°, проведём биссектрису AD. Четвёрка точек A, B, C и D даёт контрпример: она несимметрична, но любые три из этих точек лежат либо в вершинах равнобедренного треугольника, либо на одной прямой.


Ответ

Неверно.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2001/2002
Номер 23
вариант
Вариант осенний тур, тренировочный вариант, 8-9 класс
Задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .