ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Нилов Ф.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



Задача 65241

Темы:   [ Принцип крайнего (прочее) ]
[ Обыкновенные дроби ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Автор: Нилов Ф.

На доске написаны  N ≥ 9  различных неотрицательных чисел, меньших единицы. Оказалось, что для любых восьми различных чисел с доски на ней найдётся такое девятое, отличное от них, что сумма этих девяти чисел целая. При каких N это возможно?
Прислать комментарий     Решение


Задача 115878

Темы:   [ Четырехугольники (прочее) ]
[ Три прямые, пересекающиеся в одной точке ]
[ Решение задач при помощи аффинных преобразований ]
[ Аналитический метод в геометрии ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Нилов Ф.

Дан четырёхугольник ABCD, противоположные стороны которого пересекаются в точках P и Q. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей ABCD.

Прислать комментарий     Решение

Задача 64745

Темы:   [ Четырехугольники (прочее) ]
[ Кривые второго порядка ]
[ Проективные преобразования плоскости ]
[ Монотонность, ограниченность ]
Сложность: 5+
Классы: 10,11

Автор: Нилов Ф.

Проекции двух точек на стороны четырёхугольника лежат на двух различных концентрических окружностях (проекции каждой точки образуют вписанный четырёхугольник, а радиусы соответствующих окружностей различны). Докажите, что четырёхугольник – параллелограмм.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .