Страница:
<< 1 2 3 4 5 6 [Всего задач: 28]
|
|
Сложность: 5- Классы: 9,10,11
|
На доске написаны N ≥ 9 различных неотрицательных чисел, меньших единицы. Оказалось, что для любых восьми различных чисел с доски на ней найдётся такое девятое, отличное от них, что сумма этих девяти чисел целая. При каких N это возможно?
|
|
Сложность: 5- Классы: 8,9,10,11
|
Дан четырёхугольник ABCD, противоположные стороны которого пересекаются в точках P и Q. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма.
Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей ABCD.
|
|
Сложность: 5+ Классы: 10,11
|
Проекции двух точек на стороны четырёхугольника лежат на двух различных концентрических окружностях (проекции каждой точки образуют вписанный четырёхугольник, а радиусы соответствующих окружностей различны). Докажите, что четырёхугольник – параллелограмм.
Страница:
<< 1 2 3 4 5 6 [Всего задач: 28]