ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Булевой функцией называется функция, принимающая одно из логических значений TRUE или FALSE и зависящая от некоторого (быть может, нулевого) количества аргументов, каждый из которых также может принимать любое из значений TRUE или FALSE.

Любая булева функция однозначно задается своей таблицей истинности, в которой для каждого возможного набора значений аргументов указано значение функции. Например, x AND y – булева функция от двух аргументов. Ее таблица истинности выглядит так: 

Если договориться, что наборы значений аргументов в таблице располагаются в лексикографическом порядке, то функция AND однозначно задается третьим столбцом таблицы – строкой 0001. Аналогично, каждой булевой функции от k аргументов можно поставить в соответствие строку из нулей и единиц длины 2k.

Задан набор из N+1 булевой функции (f, f1, f2, ..., fN). Напишите программу, которая определяет, можно ли функцию f выразить через функции f1, f2, ..., fN, и если такие представления возможны, то находит кратчайшее по числу символов среди них.

Входные данные

В первой строке входного файла записано целое число N (1 ≤ N ≤ 9). Последующие N+1 строк содержат описания функций f, f1, f2, ..., fN соответственно. Каждая из функций описывается строкой символов так, как указано выше. Число аргументов у функции f будет не более двух, а у остальных функций – не более трех.

Выходные данные

Первая строка выходного файла должна содержать искомое символьное представление, либо строку «Impossible», если такого представления не
существует. После функции с нулевым числом аргументов скобки не ставятся. Если у функции f один аргумент, то он обозначается x, а если два, то они обозначаются x и y.

Пример входного файла

2
1
1010
0

Пример выходного файла

f1(f2,f2)

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56]      



Задача 98734

 [Перестановки]
Тема:   [ Генерация объектов любым методом ]
Сложность: 3

Задан массив А [1: m]попарно различных чисел. Напечатать все перестановки этих чисел.
Прислать комментарий     Решение


Задача 98736

 [Арифметические действия]
Тема:   [ Генерация объектов любым методом ]
Сложность: 3

В написанном выражении ((((1? 2) ? 3) ? 4) ? 5) ? 6 вместо каждого знака ? вставить знак одного из четырех арифметических действии: +, -, *, \ так, чтобы результат вычислении равнялся 35 (при делении дробная часть в частном отбрасывается). Достаточно найти одно решение.
Прислать комментарий     Решение


Задача 98751

 [Сумма по подмножеству]
Тема:   [ Динамическое программирование: классические задачи ]
Сложность: 3

Даны цело численный массив А [1: n] и число М. Найти множество элементов А [i1], А [i2], ..., А [ik] (1< i1 < ... < ik < n), что А [i1] + А [i2] + ... А [ik] = М.

Предполагается, что такое множество заведомо существует.

Прислать комментарий     Решение

Задача 98757

 [Лабиринт]
Тема:   [ Обход графа в ширину ]
Сложность: 3

Может ли путник выйти из лабиринта? Если может, то напечатать путь от выхода до начального положения путника. Лабиринт задан массивом А размером 40*40, в котором:

А [k, m] = 0 , если клетка [k,m] "проходима'';

А [k,m] = 1, если клетка [k,m] '' непроходима ''.

Начальное положение путника задается в проходимой клетке [i, j]. Путник может перемещаться из одной проходимой клетки в другую, если они имеют общую сторону. Путник выходит из лабиринта , когда попадает в граничную клетку ( то есть клетку [k,m],где k или m равны 1 или 40 ).

Прислать комментарий     Решение

Задача 98792

 [Не составляемое число]
Темы:   [ Прочие задачи на сообразительность ]
[ Двоичный поиск ]
Сложность: 3

Задан массив натуральных чисел P[1:n]. Найти минимальное натуральное число, не представимое суммой никаких элементов массива P. Сумма может состоять и из одного слагаемого, но каждый элемент массива может входить в неё только один раз.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .