ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В углу шахматной доски размером n×n полей стоит ладья. При каких n, чередуя горизонтальные и вертикальные ходы, она может за n² ходов побывать на всех полях доски и вернуться на место? (Учитываются только поля, на которых ладья останавливалась, а не те, над которыми она проносилась во время хода.)

Вниз   Решение


Из заданных n предметов выбрать такие , чтобы их суммарный вес был менее 30 кг, а стоимость - наибольшей. Напечатать суммарную стоимость выбранных предметов. Точнее- заданы два массива положительных чисел А[1:n] и В[1:n]. Выбрать такие попарно различные числа i1, i2,... ik, чтобы сумма

А[i1] + A[i2] +...+ A[ik] < 30, а сумма

B[i1] + B[i2] +...+ B[ik] = max была максимальной. Напечатать только величину max

Замечание. Можно предполагать , что предметы уже расположены в порядке возрастания или убывания веса А[i], стоимости В[i], цены В[i] / A[i] или какого-либо иного признака.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 6702]      



Задача 54205

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 2
Классы: 8,9

Катеты прямоугольного треугольника равны 12 и 16. Найдите высоту, проведённую из вершины прямого угла.

Прислать комментарий     Решение

Задача 54657

Темы:   [ Признаки подобия ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 2
Классы: 8,9

Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, разбивает треугольник на два подобных треугольника.

Прислать комментарий     Решение

Задача 54751

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Необычные построения (прочее) ]
Сложность: 2
Классы: 8,9

На линейке отмечены три деления: 0, 2 и 5. Как отложить с её помощью отрезок, равный 6?

Прислать комментарий     Решение

Задача 54774

Темы:   [ Необычные построения (прочее) ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2
Классы: 8,9

Имеется угольник с углом в 40°. Как с его помощью построить угол, равный:
 а) 80°;   б) 160°;   в) 20°?

Прислать комментарий     Решение

Задача 55146

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 2
Классы: 8,9

У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .