ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Храмцов Д.

На клетчатый лист бумаги размера 100×100 положили несколько попарно неперекрывающихся картонных равнобедренных прямоугольных треугольничков с катетом 1; каждый треугольничек занимает ровно половину одной из клеток. Оказалось, что каждый единичный отрезок сетки (включая граничные) накрыт ровно одним катетом треугольничка. Найдите наибольшее возможное число клеток, не содержащих ни одного треугольничка.

Вниз   Решение


В треугольнике ABC медианы AA0, BB0, CC0 пересекаются в точке M.
Докажите, что центры описанных окружностей треугольников MA0B0, MCB0, MA0C0, MBC0 и точка M лежат на одной окружности.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 108090

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Векторы помогают решить задачу ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4-
Классы: 8,9,10

Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N – центры описанных окружностей треугольников AKB и CKD соответственно. Докажите, что  OM = KN.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .