Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 42]
В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовал хотя бы один школьник этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в 1/20 всех экскурсий.
|
|
Сложность: 3+ Классы: 10,11
|
Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:
а) равные многоугольники;
б) правильные многоугольники?
а) Внутри окружности находится некоторая точка A. Через A провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках.
Докажите, что центр масс этих точек не зависит от выбора таких двух прямых.
б) Внутри окружности находится правильный 2n-угольник (n > 2), его центр A не обязательно совпадает с центром окружности. Лучи, выпущенные из A в вершины 2n-угольника, высекают 2n точек на окружности. 2n-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2n новых точек. Докажите, что их центр масс совпадает с центром масс старых 2n точек.
Пусть I – центр вписанной окружности прямоугольного треугольника ABC, касающейся катетов AC и BC в точках B0 и A0 соответственно. Перпендикуляр, опущенный из A0 на прямую AI, и перпендикуляр, опущенный из B0 на прямую BI, пересекаются в точке P. Докажите, что прямые CP и AB перпендикулярны.
|
|
Сложность: 4- Классы: 8,9,10
|
Числа 1, 2, ..., 100 стоят по кругу в некотором порядке.
Может ли случиться, что у любых двух соседних чисел модуль разности не меньше 30, но не больше 50?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 42]