Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 49]
Задача
64984
(#10.3)
|
|
Сложность: 4+ Классы: 10,11
|
Дано два тетраэдра A1A2A3A4 и B1B2B3B4. Рассмотрим шесть пар рёбер AiAj и BkBl, где (i, j, k, l) – перестановка чисел (1, 2, 3, 4) (например, A1A2 и B3B4). Известно, что во всех парах, кроме одной, рёбра перпендикулярны. Докажите, что в оставшейся паре рёбра тоже перпендикулярны.
Задача
65029
(#3)
|
|
Сложность: 3+ Классы: 8,9
|
В треугольнике ABC ∠A = 60°. Серединный перпендикуляр к отрезку AB пересекает прямую AC в точке C1. Серединный перпендикуляр к отрезку AC пересекает прямую AB в точке B1. Докажите, что прямая B1C1 касается вписанной окружности треугольника ABC.
Задача
64969
(#8.4)
|
|
Сложность: 4- Классы: 8,9,10
|
В окружности радиуса 1 проведено несколько хорд, суммарная длина которых тоже равна 1.
Докажите, что в окружность можно вписать правильный шестиугольник, стороны которого не пересекают этих хорд.
Задача
64977
(#9.4)
|
|
Сложность: 5- Классы: 9,10,11
|
Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.
Задача
64985
(#10.4)
|
|
Сложность: 5 Классы: 10,11
|
На стороне AB треугольника ABC взята точка D. В угол ADC вписана окружность, касающаяся изнутри описанной окружности треугольника ACD, а в угол BDC – окружность, касающаяся изнутри описанной окружности треугольника BCD. Оказалось, что эти окружности касаются отрезка CD в одной и той же точке X. Докажите, что перпендикуляр, опущенный из X на AB, проходит через центр вписанной окружности треугольника ABC.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 49]