ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 67305

Темы:   [ Квадратные корни (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4+
Классы: 7,8,9,10,11

Вася выбрал $100$ различных натуральных чисел из множества ${1, 2, 3, \ldots, 120}$ и расставил их в некотором порядке вместо звёздочек в выражении (всего $100$ звёздочек и $50$ знаков корня) $$ \sqrt{(* + *)\cdot \sqrt{(* + *) \cdot \sqrt{ \ldots \sqrt{*+*}}}} . $$ Могло ли значение полученного выражения оказаться целым числом?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .