ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Можно ли поверхность октаэдра оклеить несколькими правильными шестиугольниками без наложений и пробелов?

Вниз   Решение


Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 105097

Темы:   [ Системы точек ]
[ Свойства симметрий и осей симметрии ]
[ Примеры и контрпримеры. Конструкции ]
[ Процессы и операции ]
Сложность: 2+
Классы: 6,7,8

Можно ли поставить на плоскости 100 точек (сначала первую, потом вторую и так далее до сотой) так, чтобы никакие три точки не лежали на одной прямой и чтобы в любой момент фигура, состоящая из уже поставленных точек, имела ось симметрии?
Прислать комментарий     Решение


Задача 105102

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 2+
Классы: 5,6,7,8

Можно ли расставить на футбольном поле четырёх футболистов так, чтобы попарные расстояния между ними равнялись 1, 2, 3, 4, 5 и 6 метров?

Прислать комментарий     Решение

Задача 105098

Тема:   [ Процессы и операции ]
Сложность: 3-
Классы: 6,7,8

Даны шесть слов:
   ЗАНОЗА
   ЗИПУНЫ
   КАЗИНО
   КЕФАЛЬ
   ОТМЕЛЬ
   ШЕЛЕСТ
За один шаг можно заменить любую букву в любом из этих слов на любую другую (например, за один шаг можно получить из слова ЗАНОЗА слово ЗКНОЗА. Какое наименьшее число шагов нужно, чтобы сделать все слова одинаковыми (допускаются бессмысленные)?

Прислать комментарий     Решение


Задача 105108

Темы:   [ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 7,8,9,10

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

Прислать комментарий     Решение

Задача 105114

Темы:   [ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9,10

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .