ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Алиса и Базилио играют в следующую игру; из мешка, первоначально содержащего 1331 монету, они по очереди берут монеты, причем первый ход делает Алиса и берет 1 монету, а далее при каждом следующем ходе игрок берет (по своему усмотрению) либо столько же монет, сколько взял другой игрок последним ходом, либо на одну больше. Проигрывает тот, кто не может сделать очередной ход по правилам. Кто из игроков может обеспечить себе выигрыш независимо от ходов другого?

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 105218

Темы:   [ Теория игр (прочее) ]
[ Арифметическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 8,9,10

Алиса и Базилио играют в следующую игру; из мешка, первоначально содержащего 1331 монету, они по очереди берут монеты, причем первый ход делает Алиса и берет 1 монету, а далее при каждом следующем ходе игрок берет (по своему усмотрению) либо столько же монет, сколько взял другой игрок последним ходом, либо на одну больше. Проигрывает тот, кто не может сделать очередной ход по правилам. Кто из игроков может обеспечить себе выигрыш независимо от ходов другого?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .