ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется 10 отрезков, причём известно, что длина каждого – целое число сантиметров. Два самых коротких отрезка – по сантиметру, самый длинный – 50 см. Докажите, что среди отрезков найдутся три, из которых можно составить треугольник.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 107698  (#1)

Темы:   [ Средние величины ]
[ Подсчет двумя способами ]
Сложность: 2
Классы: 6,7,8,9

Может ли среднее арифметическое 35 целых чисел равняться 6,35?

Прислать комментарий     Решение

Задача 107699  (#2)

Темы:   [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 2+
Классы: 6,7,8

Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?
Прислать комментарий     Решение


Задача 107700  (#3)

Темы:   [ Неравенство треугольника (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
[ Доказательство от противного ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 7,8,9

Имеется 10 отрезков, причём известно, что длина каждого – целое число сантиметров. Два самых коротких отрезка – по сантиметру, самый длинный – 50 см. Докажите, что среди отрезков найдутся три, из которых можно составить треугольник.

Прислать комментарий     Решение

Задача 107701  (#4)

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3-
Классы: 7,8,9

Из точки M внутри четырёхугольника ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне AB — через X, лежащее на стороне BC — через Y, лежащее на стороне CD — через Z, лежащее на стороне DA — через T. Известно, что AXXB, BYYC, CZZD, DTTA. Докажите, что вокруг четырёхугольника ABCD можно описать окружность.
Прислать комментарий     Решение


Задача 107702  (#5)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Куб ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3+
Классы: 8,9,10,11

Поверхность кубика Рубика 3 x 3 x 3 состоит из 54 клеток. Какое наибольшее количество клеток можно отметить так, чтобы отмеченные клетки не имели общих вершин?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .