ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Мусин О.

Докажите, что если числа a1, a2, ..., am  отличны от нуля и для любого целого  k = 0, 1, ..., n  (n < m – 1)  выполняется равенство:
a1 + a2·2k + a3·3k + ... + ammk = 0,  то в последовательности a1, a2, ..., am  есть по крайней мере  n + 1  пара соседних чисел, имеющих разные знаки.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 109626

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Многочлены (прочее) ]
[ Неравенства. Метод интервалов ]
Сложность: 5
Классы: 10,11

Автор: Мусин О.

Докажите, что если числа a1, a2, ..., am  отличны от нуля и для любого целого  k = 0, 1, ..., n  (n < m – 1)  выполняется равенство:
a1 + a2·2k + a3·3k + ... + ammk = 0,  то в последовательности a1, a2, ..., am  есть по крайней мере  n + 1  пара соседних чисел, имеющих разные знаки.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .