ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Полицейский участок расположен на прямой дороге, бесконечной в обе стороны. Некто угнал старую полицейскую машину, максимальная скорость которой составляет 90% от максимальной скорости новой машины. В некоторый момент в участке спохватились и послали вдогонку полицейского на новой полицейской машине. Однако вот беда: полицейский не знал, ни когда машина была угнана, ни в каком направлении вдоль дороги уехал угонщик. Сможет ли полицейский поймать угонщика?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 116033  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4-
Классы: 9,10,11

Автор: Стунжас Л.

Банкомат обменивает монеты: дублоны на пистоли и наоборот. Пистоль стоит s дублонов, а дублон – 1/s пистолей, где s не обязательно целое. В банкомат можно вбросить любое число монет одного вида, после чего он выдаст в обмен монеты другого вида, округляя результат до ближайшего целого числа (если ближайших чисел два, выбирается большее).

  а) Может ли так быть, что обменяв сколько-то дублонов на пистоли, а затем обменяв полученные пистоли на дублоны, мы получим больше дублонов, чем было вначале?

  б) Если да, то может ли случиться, что полученное число дублонов ещё увеличится, если проделать с ними такую же операцию?

Прислать комментарий     Решение

Задача 116034  (#2)

Темы:   [ Описанные четырехугольники ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Неравенство треугольника (прочее) ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 9,10,11

Диагонали выпуклого четырёхугольника ABCD перпендикулярны и пересекаются в точке O. Известно, что сумма радиусов окружностей, вписанных в треугольники AOB и COD, равна сумме радиусов окружностей, вписанных в треугольники BOC и DOA. Докажите, что
  а) четырёхугольник ABCD – описанный;
  б) четырёхугольник ABCD симметричен относительно одной из своих диагоналей.

Прислать комментарий     Решение

Задача 116035  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Задачи на движение ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Полицейский участок расположен на прямой дороге, бесконечной в обе стороны. Некто угнал старую полицейскую машину, максимальная скорость которой составляет 90% от максимальной скорости новой машины. В некоторый момент в участке спохватились и послали вдогонку полицейского на новой полицейской машине. Однако вот беда: полицейский не знал, ни когда машина была угнана, ни в каком направлении вдоль дороги уехал угонщик. Сможет ли полицейский поймать угонщика?

Прислать комментарий     Решение

Задача 116036  (#4)

Темы:   [ Шахматная раскраска ]
[ Четность и нечетность ]
[ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Квадратная доска разделена на n² прямоугольных клеток  n – 1  горизонтальными и  n – 1  вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.

Прислать комментарий     Решение

Задача 116037  (#5)

Темы:   [ Турниры и турнирные таблицы ]
[ Индукция (прочее) ]
[ Числа Фибоначчи ]
Сложность: 4
Классы: 9,10,11

55 боксёров участвовали в турнире по системе "проигравший выбывает". Бои шли последовательно. Известно, что у участников каждого боя число предыдущих побед отличалось не более чем на 1. Какое наибольшее число боёв мог провести победитель турнира?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .